Схема музыкальной мини тесла. Музыкальная катушка Тесла HBR-M

Описание полу-мостовой демонстрационной катушки Тесла с аудио модуляцией.

Для того, чтобы проигрывать музыку высоковольтными разрядами нужны транзисторная катушка Тесла, пульт управления он же прерыватель, способный передавать ноты в схему управления генератора и источник сигнала – ноут-бук, ПК или музыкальная клавиатура. Это всё подключается вместе и в итоге получается весьма эффектное представление - поющая катушка. Хотя на протяжении проходивших мини концертов меня не оставляло ощущение о том, что это всё есть масштабное баловство. Похоже, что тут уже ничего не поделать и сложилась такая молодежная поп-культура. Сегодня в мире организуются целые масштабные представления с катушками Тесла, концерты и Тесла шоу которые собирают много любопытствующих. Смотреть на музыкальные разряды гораздо лучше, чем на просто разряды. О чем идет речь можно понять из видео.

Чтоб получить подобные результаты нужно собрать следующую схему.

Рисунок 1 – Структурная схема подключения аудио сигнала к DRSSTC

Есть и другие варианты, но такая схема наиболее проста. Рассмотрим кратко каждый блок.

Катушка Тесла DRSSTC.

В качестве генератора выбрана DRSSTC 1, которая использовалась для однопроводной линии. Она была почти полностью переделана и стала DRSSTC 1.1. Первоначальный вид устройства можно посмотреть . В генераторе использован полу-мостовой коммутатора тока с транзисторами IRGP50B60PB1. Полу-мост и GDT остались без изменений.

Силовая часть управляется универсальным драйвером Стивена Варда UD1.3b. Схема в оригинале . Описание на сайте автора.
Собранная схема представлена на рисунке 2.



Рисунок 2 - Плата управления DRSSTC

Плата прячется в металлический корпус, чтоб не ловить наводки от ВЧ поля катушки. Рассмотрение принципа работы схемы помещено в отдельную статью.

Блок питания.

БП - это схема плавного запуска и выпрямитель с фильтровым конденсатором. Так же в нем есть предохранитель на 5А, помехоподавляющий конденсатор и на одну плату со всем этим прикреплен понижающий трансформатор 220/18 для питания низковольтной электроники. Схема плавного заряда электролитов состоит из реле и зарядных резисторов. Прочитать о ней можно .



Рисунок 3 - Блок питания

Через 5-6 сек. после подачи напряжения питания срабатывает реле и генератор можно запускать. При этом не происходит броска тока, так как конденсатор большой емкости зарядился через резисторы.


Рисунок 4 - Внутреннее содержание корпуса

Кроме драйвера, БП и контурных конденсаторов в корпусе находятся трансформаторы тока для организации обратной связи и защиты от превышения контурного тока (OCD). Как они работают, тоже уже написано .

Резонансный трансформатор.

Первичный контур сделан из переключаемой емкости и конической первичной обмотки, выполненной проводом Ø3мм, 12 витков. Резонанс на 10-ом витке.


Рисунок 5 - Первичная и вторичная обмотки резонансного трансформатора

Батарея MMC собрана из конденсаторов CBB81. Общая емкость составляет 147нФ 4кВ. Для работы с вторичной обмоткой, специально сделанной для этого проекта, емкость составляет 47нФ. В связи с переключаемой емкостью генератор универсален и может работать с различными вторичными обмотками.



Рисунок 6 - Конденсаторы первичного колебательного контура

Вторичная обмотка выполнена проводом Ø0,18мм на каркасе Ø11 см. Всего 1200 витков. Длина намотки 25см.
Емкость для вторичной обмотки сделана из алюминиевого гофрированного воздуховода. Согласно расчету тороид должен быть с внешним диаметром 18см и диаметром самой трубы 8 см. Такого тороида не нашлось и гофры в магазине не оказалось. Ближайшим по размеру являлся тороид от одной старой SSTC, он без дела лежал на чердаке и в результате оказался на вершине вторичной обмотки. Его внешний диаметр 21-22 см. Это больше расчетного значения, но катушка с ним запустилась и создавала разряды до 30см.
Спустя некоторое время всё же решено было достичь расчетных значений. Был построен тороид требуемого диаметра из алюминиевых колец. Кольца держаться с помощью пластиковых кругов. Чтоб кольца не развалились, они дополнительно склеены термо-клеем.



Рисунок 7 - Тороид из колец

Катушка с таким тороидом почему-то работать отказывалась пока все кольца не были соединены тонким куском провода в одном месте.


Рисунок 8 - Соединение колец проволкой

Для сравнения два видео с разными тороидами. Все прочие параметры генератора не изменялись. Длительность импульса 115-120мкс, период 5мс.

При уменьшении внешнего диаметра тороида разряды возросли до 35-40 см. Это еще раз доказывает, что в трансформаторах Тесла важен точный частотный расчет связанных контуров и соблюдение четверть-волнового резонанса на краях высоковольтной катушки. При этом нужно стараться сделать катушку так, чтобы вышеназванные параметры были достигнуты при наибольшем размере емкости на верхнем выводе вторичной обмотки. В данном случае катушка рассчитана на небольшой тороид.
Предполагалось сделать внешний вид всего устройства в стиле Half-Life 1, но эта идея была оставлена на половине пути.
Еще одной мерой по увеличению длины разряда стало уменьшение разрядного штыря на 1см. При этом начал срабатывать ограничитель тока, который был установлен на 150А. Среднее потребление от сети составляет 220В 2-3А, на некоторых нотах ток возрастает до 4А.
После длительных запусков выяснилось, что нагревается первичная обмотка. Похоже, что она тормозит дальнейший рост длины разряда при увеличении длительности рабочего импульса, потому что сделана из провода небольшого диаметра. Немного греются конденсаторы, транзисторы и электролит питания, а самым горячим оказался трансформатор 220/18В, 0,555А. Следовало брать этот трансформатор мощностью 15-20 Ватт, хотя по предварительным расчетам 10Вт было вполне достаточно.

Прерыватель и USB-MIDI переходник.



Рисунок 9 - Пульт управления (Прерыватель)

Прерыватель получился весьма приятный на вид. Внутри корпуса собранная схема прерывателя i1 разработчика BSVi. Все подробности, прошивка и схема на сайте автора. В написании программ для микроконтроллеров типа ATmega разбираться не хотелось и по этому была собрана эта схема с готовой прошивкой.
Прерыватель оказался весьма хорош. Сперва были спалены несколько SMD конденсаторов мощным паяльником и прерыватель работал нестабильно, часто перезагружался, плохо переключались режимы работы. Потом конденсаторы были заменены и всё стало нормально работать. Кроме режима проигрывания MIDI есть стандартные для DRSSTC непрерывный режим и режим с прерываниями. Прерыватель подключается к DRSSTC трех-метровым оптическим патч-кордом.
Для загрузки прошивки в микроконтроллер понадобился программатор. В моем случае он выглядел как на рис.10.


Рисунок 10 - Программатор для ATmega

Использовалась программа USBASP AVRDUDE PROG, она скачена откуда-то из интернета.
Важной частью в этой системе является USB-MIDI переходник. Его можно построить по схеме, которых в интернете много, а можно не мучиться и купить. Я выбрал второй вариант.

Рисунок 11 - USB-MIDI переходник

Ноут-бук или ПК.

В этом пункте всё понятно из названия. Мелодии в формате MIDI проигрываются с помощью плеера в котором есть возможность назначить выходной порт. Например подойдет Midi player 2.6 (by Falcosoft). Его размер около 1 Мб. В основном все мелодии скачены с сайта OneTesla. Вот одна для примера (Ievan Polkka.mid) .

Спустя какое то время катушка модернизировалась до версии 1.2. Статья была написана давно и лежала на жестком диске. Чтоб её не редактировать, изменения отражены на схеме, которая всё-таки была нарисована (хотя не планировалась). Изменился драйвер, транзисторы полумоста, конденсатор питания и куча мелких доработок.

Когда все части собраны и настроены, подключаем катушку Тесла к ноут-буку и устраиваем концерт, но не забываем технику безопасности.

Звучание различается при съемке разными устройствами. Лучше конечно это смотреть и слушать в живую.

Физический принцип работы музыкальных Катушек Тесла во время Тесла-шоу

Любой звук это механическая волна в воздухе, которая характеризуется амплитудой и частотой. Определенной музыкальной ноте, которую играет музыкальный инструмент, соответствует своя частота, амплитуда при этом определяет громкость ноты. Например, ноте ДО малой октавы соответствует частота 130,81Гц, а ноте ЛЯ первой октавы соответствует частота 440Гц.

Любой повторяющийся процесс с частотой 440Гц, который вызовет колебания воздуха, будет восприниматься ухом похожим на ноту ЛЯ. Музыкальная Катушка Тесла работает именно по этому принципу.

При включении Катушка Тесла генерирует электрический разряд в воздухе, который вызывает фактическую детонацию и последующую звуковую волну. Используя описанный принцип и включая Катушку Тесла с нужной нам частотой, мы можем проигрывать музыкальные ноты последовательностью «микровзрывов». Пояснения этого процесса изображено на рисунке ниже. Для проигрывания ноты ЛЯ, с частотой 440Гц необходимо включать Катушку Тесла с частотой 880Гц т.е. в два раза большей, т.к. синусоидальная звуковая волна имеет положительную и отрицательную амплитуду за один период.

При этом Катушка Тесла играет некие «псевдо» ноты, что создает неповторимое электрическое звучание. Из рисунка видно что, чем ниже нота, тем реже включается Катушка Тесла и тем меньше потребляемая мощность, следовательно, разряд уменьшается и больше ветвится, а на высоких частотах разряд обретает мощь и громкость. Чередую высокие и низкие частоты можно добиться лучшего визуального восприятия композиции. Ч тобы создать симметрию и разнообразие необходимо несколько раз играть высокие ноты на одной Катушке Тесла, а низкие на другой, а затем менять их местами.

Для проигрывания практически любой мелодии достаточно двух Катушек Тесла, каждая из которых независимо воспроизводит свою ноту, создавая стереозвучание.

ВАЖНО! В один момент времени одна Катушка Тесла может воспроизводить только одну ноту, это следует помнить при написании музыки (при этом возможно проигрывать на одной Катушке Тесла несколько нот одновременно, но это искажает звук и усложняет проект, поэтому этот режим не используется).

Как проигрывается музыка?

Для работы двух Катушек Тесла используется два миди канала — первый и второй. Каждая Катушка Тесла воспроизводит по одной ноте последовательно из своей миди дорожки.

Ноты поступают в пульт управления Катушками Тесла по миди кабелю. При этом пульт можно подключить к миди-синтезатору и проигрывать музыку в реальном времени, или подключить к компьютеру и проигрывать заранее записанные миди треки.

Катушки Тесла имеют ограниченный диапазон проигрывания нот. Рекомендуется использовать ноты от С1 (ДО контроктавы) до H4 (CИ первой октавы). Ноты в других октавах проигрываться пультом не будут. Это связано с плохим восприятием на слух очень низких нот и очень большой нагрузкой по мощности при более высоких нотах.

Пример создания композиции в программе Cubase

Для примера ниже показаны обработанная композиция Баха Токката и фуга ре минор и видео с исполнением этой композиции.


На сайте Кickstarter трое американских студентов представили проект OneTesla. Знаменитую резонансную катушку Тесла, используемую учёными для получения высоких напряжений на высоких частотах, юные физики уменьшили в размерах и превратили в необычный музыкальный инструмент с MIDI интерфейсом, воспроизводящий музыку при помощи красивых разрядов-молний. Музыкальную катушку изобретатели предлагают в виде конструктора «сделай сам» по цене около $330.

Оригинал катушки Тесла может иметь размеры небольшой комнаты и выдавать разряды-молнии длиной до нескольких метров, при этом рабочее напряжение катушки может составлять до 250 000 вольт, что делает устройство крайне опасным для жизни. Но студенты предлагают более безобидный прототип резонансной катушки: OneTesla имеет высоту всего 25 см и выдаёт при этом «молнии» длиной до 60-ти см.


Музыкальной катушку OneTesla делает альянс с MIDI интерфейсом, но в целом устройство, как и более ста лет назад, работает от уникального трансформатора Тесла. Воспроизвести звук с OneTesla в домашних условиях можно, подключив катушку к ПК или синтезатору через порт USB MIDI. «Музыкальная катушка» одновременно может проигрывать всего 2 ноты, но этого достаточно, чтобы вполне разборчиво услышать любимую мелодию в необычном исполнении.


Авторы проекта предлагают комплект с набором необходимых деталей, чтобы собрать OneTesla самостоятельно. И хотя устройство является не самым простым, разработчики уверяют, что следуя подробным инструкциям и умея обращаться с паяльником, катушку можно собрать в течение одного дня. В комплект «сделай сам» входит непосредственно трансформатор Тесла, две платы, две обмотки, тороид, конденсатор, а также ряд более мелких элементов. При этом стартап является абсолютно открытым, и молодые физики предоставляют бесплатный доступ к подробным схемам OneTesla.



Первичная обмотка в катушке OneTesla имеет 6 витков провода диаметром 1,6мм, вторичная обмотка рассчитана на 1800 витков провода диаметром 0,127 мм. Плата-драйвер, связанная с первичной обмоткой подключается к электрической сети и обеспечивает питание устройства. А плата-прерыватель, сконструированная на базе микроконтроллера ATmega328P-PU, предназначена для генерирования сигналов включения и выключения, создающих разряды на нужной частоте. К ней подключается MIDI-устройство, с которого и считывается входной сигнал. В целях защиты устройства от высоких напряжений, сигнал от одной платы к другой передаётся посредством оптоволокна, а также на плате-прерывателе установлена специальная механическая ручка, регулирующая выходную мощность устройства.

На сайте проекта авторы предупреждают и о мерах безопасности при использовании музыкальной катушки. Так, например, ни в коем случае нельзя вступать в контакт с искрами. Кроме того важно учитывать, что ионизированный вокруг устройства воздух выделяет озон, который в больших количествах является раздражающим газом. Поэтому использовать катушку можно только в хорошо проветриваемом помещении. Но даже несмотря на такие строгие правила эксплуатации, за полгода существования катушки ОneTesla появились десятки тысяч желающих приобрести этот необычный прототип катушки от легендарного изобретателя.


К сожалению, не получилось встроить видео с презентацией. Если что, то вот оно .

OneTesla - это небольшая катушка Тесла, подключаемая через порт MIDI и играющая музыку электрическими разрядами. Само устройство, которое в высоту около 25 сантиметров, может выдавать молнии длиной до полуметра. Этот агрегат может устроить неплохое шоу и удивить ваших друзей музыкальной плазмой. Все спецификации устройства открыты и доступны вместе с инструкцией по сборке на сайте проекта .

Как она играет музыку?

Человеческое ухо воспринимает звуковые волны где-то от 20 герц до 20 килогерц, в то время, как устройство резонирует с частотой 230 кГц, что значительно превышает максимальную частоту звука, слышимую человеком. Но можно включать и выключать разряды именно с той частотой, с которой слышен нужный нам звук.

Краткие технические характеристики

Параметр Значение
Первичная катушка 6 витков, радиус 88.9мм, 1.6мм провод (14 AWG)
Вторичная катушка 65мм х 254мм, 0.127мм провод (36 AWG), 1800 витков
Конденсатор CDE 940C30S68K, 0.068μF@3000V
Тороид 200мм х 50мм, покрыт фольгой
Резонансная частота ~230 КГц
Инвертор Полумост на базе IGBT транзисторов FGA60N65SMD, 340 вольт
Длительность импульса 50 мкс при 1 КГц, 150 мкс при 50 Гц)
Максимальная длина разряда 58 см
МК платы-прерывателя ATmega328P-PU


Немного о принципе работы


Полёт шмеля в исполнении OneTesla

Я писал ранее про способы использования для извлечения музыки и звуков, и две основные разновидности способа модуляции плазменного разряда (для импульсных катушек и для непрерывных соответственно): монофонический частотный и полноспектровый амплитудный. Музыкальные катушки Тесла, сделанные по первому принципу (в основном это ), принимают на вход MIDI-сигнал, и издают трещащие пронзительные звуки, напоминающие мелодии со старых мобильников; звуковые трансформаторы Тесла второго типа работают как ионофоны , т. е. просто усиливают поступающий на вход сигнал с плеера или другого источника звука, как это делает любой звуковой усилитель, с той лишь разницей, что источником звука здесь является разогретая плазма разряда.

На данный момент известно два принципиально различных способа сделать такую звуковую катушку Тесла на транзисторах. Это использование buck-преобразователя в питании силовой части схемы (амплитудная модуляция) и классического автогенератора, или же использование резонансного драйвера полумоста (LLC) (частотно-амплитудная модуляция), вместе с фазовой автоподстройкой частоты (ФАПЧ, PLL). На баке сделана моя первая звуковая катушка, которая подробно описана во второй половине данной статьи. У неё есть ряд недостатков: низкая громкость звука, высокий уровень помех в звуке, большая CW-составляющая в разряде (грубо говоря, только малая часть объёма плазмы меняет свой размер в такт звуковой частоте). Их лишена вторая упомянутая топология, которая, насколько мне известно, ранее практически не применялась при построении звуковых катушек.

Амплитудный сигнал с плеера, поступающий на вход драйвера, преобразуется в, назовём это так, отклонения реальной частоты драйвера от некоторой частоты X, которая совпадает в случае максимальной выставленной громкости с резонансной частотой катушки, поскольку берётся ФАПЧой через антенну со вторички. Если с плеера поступает сигнал, скажем, в 500 герц, с амплитудой от 0 до максимума плеера (или до ограничения, установленного, как в этой катушке, двумя диодами Шоттки (+-300 милливольт), чтобы не сжечь вход драйвера возможными наводками на звуковой кабель), то 500 раз в секунду происходит отстройка частоты от заданной ФАПЧ средней до некоторой граничной. Честно скажу, не знаю, какова эта граничная частота в данном случае, но, скорее всего, 10% от резонансной достаточно для полного пропадания стримера.

При регулировке же громкости в драйвере происходит смещение частоты X от резонанса так, чтобы максимальная громкость от стримера регулировалась пропорционально задаваемой на плеере. Резонансная частота такого музыкального трансформатора Тесла выполняет функцию несущей частоты дискретизации. 160 кГц как в этой конкретной катушке Тесла, вполне достаточно для воспроизведения любой звуковой частоты в музыке (до 10 кгц).

ФАПЧ в такой топологии выполняет функцию поддержания резонансной частоты, относительно которой смещает свой выход драйвер. Без неё не будет автогенерации, и при поднесении руки, плазмашара, да даже просто при перемещении катушки в другое помещение она выйдет из рабочего режима, с непредвиденными последствиями.

Собственно, это всё. Основная сложность здесь — разработка драйвера и настройка PLL: она требует одновременной регулировки сразу двух параметров: положения и размера антеннки вместе с подкручиванием переменного резистора. Антеннка требуется совсем небольшая, около 5-8 см.

В качестве постоянно упоминающегося здесь LLC-драйвера выступает IRS27951, весьма неплохо пригодная для изготовления простых полумостов, а также для подобных экзотических применений. На её основе на данный момент сделана куча мелких полумостов для питания всего подряд, питальник для электролизёрной горелки, с обратной связью по датчику давления для поддержания постоянного давления на выходе вне зависимости от диаметра сопла горелки, на ней же сооружена мини-индукционная печь для прогрева электродов неоновых трубок, и теперь вот и катушка Тесла с музыкой. Следует аккуратно выбирать рабочую резонансную частоту: выше 200 кГц эта микросхема уже практически не работает.
ФАПЧ стандартная: CD4046. Старая, известная своей капризностью и трудностью в настройке микросхема. Но здесь от неё используется только часть, а именно фазовый компаратор, используемый для поддержания автогенерации.

Параметры обмоток ничем особо не выделяются: вторичная 16х25 см проводом 0.35, первичная — 8 витков толстой медью, ниже начала вторичной обмотки, чтобы уменьшить коэффициент связи и ток контура. Полумост сооружён на IRGP50B60, управление через GDT. Тороид мучительно спаян из алюминиевой присадки для аргонового сварочника — зато прочный и жёсткий.

Катушка выдаёт разряды длиной от 5 до 20-25 см (в зависимости от мощности звукового сигнала), в псевдоимпульсном режиме. То есть, выглядят они как импульсные, и так же больно щиплются, но на деле это CW. Катушка создаёт крайне мощное поле вокруг себя — лампы загораются на расстоянии до двух и более метров. Громкость музыки поразительная, в несколько раз выше, чем у старого варианта на buck-конвертере.

Для дополнительного пафоса сделал для катушки подсвечиваемый шильдик из фольгированного текстолита. Получилось, на мой взгляд, довольно неплохо.

На данный момент катушка приобретена и находится в использовании театром «ТиПо» , занимающимся организацией и проведением детских праздников. На видеозаписи можно посмотреть профессионально сделанное промо с её использованием!


При использовании в качестве терминала длинной изогнутой стальной проволоки, за счёт ионного ветра она начинает забавно дёргаться. Иногда в такт музыке.


Ниже находится старая статья про музыкальный трансформатор Тесла на buck-конвертере, добавленная сюда для полноты картины и описания сути музыкальных катушек Тесла.

Огромное преимущество транзисторных трансформаторов Тесла, выгодно отличающее их от искровых: их достаточно легко можно заставить петь, т.е. издавать звуки плазмой их разряда (ламповые тоже способны на это, но усилий требуется значительно больше, и удачных прецедентов сборки маловато). Сам принцип аудиомодуляции плазмы известен довольно давно; в СССР даже были концертного типа установки, модулировавшие факельный разряд звуком, устанавливавшиеся иногда (как мне рассказывали) в летних кинотеатрах. Есть даже современные профессиональные аудиосистемы, использующие электрическую дугу для издавания звука (ионофоны, плазмафоны и т. п.). Поскольку разряд катушки Тесла — такая же высоковольтная плазма, как и в факельниках или ионофонах, его можно промодулировать звуковой частотой, получив на выходе помимо электрического разряда ещё и звук.

Основных способов модуляции два: частотная и амплитудная. Частотная модуляция основывается на изменении частоты прерываний в интерраптере, при управлении с микроконтроллера, совместимого с или аналогичным форматом, или с компьютера. Основное её преимущество в возможности использования с импульсными катушками — ISSTC и — и получении огромных поющих молний с больших установок, в то время как прочие способы для этого непригодны. Силовая часть катушки Тесла включается и выключается несколько сотен раз в секунду, соответственно, плазменный канал молнии то появляется, то исчезает, и нагретый воздух создаёт звуковую волну при его появлении. Но вместо генерирования прямоугольного сигнала для управления транзисторами при помощи таймера 555, как это обычно делают, этот сигнал выдаётся микроконтроллером (или логикой, если не лень её распаивать), а на вход контроллера при этом поступает последовательность нот с определённой частотой, формирующая мелодию. Минусы метода — монофоничность, как у рингтонов старых мобильников (дифоничность в случае парной катушки Тесла) и некоторая сложность при программировании конверсии цифрового сигнала в формате MIDI в набор частот. Скоро будет доделан до законченного вида прерыватель для DRSSTC, который будет способен играть музыку этим способом.

Пример тестового музыкального трансформатора Тесла , который использует этот способ аудиомодуляции, звучит примерно так:


Реализация амплитудной аудиомодуляции катушки Тесла может быть сделана несколькими принципиально различными способами. Известные мне таковы:

1) Модуляция амплитуды напряжения. На вход инвертора — полумоста или моста — подаётся не полное рабочее напряжение, а некий процент от питающего. Реализуется это обычно при помощи т.н. buck-конвертера: топологии преобразователя из ключа (полевого транзистора или IGBT) и диода (или двух ключей для синхронного бака), и сглаживающего дросселя. Ключ управляется по затвору ШИМ-генератором (например, TL494 или аналогичным), через драйвер и опторазвязку. ШИМ-генератор же получает на вход амплитудно модулированный звуковой сигнал с плеера или другого источника звука. Получается этакое двойное преобразование: АМ -> ШИМ -> АМ. Несколько неэффективно и вносит искажение в звучание, но в целом наиболее просто.

2) Модуляция фазы и частоты. Реализуется обычно на основе ФАПЧ (CD4046 и родственников). Получая на вход амплитудный сигнал, мы в соответствии с ним сильнее или слабее мешаем ФАПЧ подстраиваться в рабочую частоту катушки (предельная частота звука — ок. 1/100 несущей частоты катушки) — уходим от резонанса. Этот метод требует использования топологии ФАПЧ при построении катушки, которая несколько сложнее простого автогенератора. Но в общем случае такой способ должен давать более чистый звук.

3) PDM (pulse density modulation), DDS и другие нестандартные методики. Основаны в основном на хитрых аналого-цифровых преобразованиях (пропуск импульсов, например, как в PDM, представляет именно такое преобразование), использовании специальных дорогостоящих микросхем (DDS) и в целом немалого знания искусства схемотехники. Но, по отзывам и записям, они позволяют получить наиболее чистый амплитудно модулированный звук.

Ниже представлена моя амплитудно аудиомодулированная SSTC (Музыкатушка, так я её называю) на полумосте из всё тех же HGTG20N60A4D и с управлением звуком через buck-конвертер и ШИМ. Она сделана более чем топорно и неаккуратно, в основном из-за того, что собиралась несколько месяцев — то не было корпуса, то горели компоненты из-за неправильного включения (я подавал питание на силовую одновременно с драйвером, и, скорее всего, драйвер запускался и работал несколько периодов неправильно, что оказывалось достаточным для выгорания силовой. Проблема решилась установкой реле, включающим силовую часть только после того, как заработает драйвер),

Вдобавок ко всему у меня отсутствовали подходящие драйверы (UCC27425), так что пришлось использовать UCC27324 и изобретать во-первых, инверсию сигнала и деление его на два канала, и, во вторых, запуск автогенерации ввиду отсутствия у неё ENABLE-входа. Всё это, впрочем, не мешает Музыкатушке неплохо работать. Это первая моя мощная катушка Тесла, постоянно работающая в CW-режиме (качеры не в счёт). Разряд имеет длину всего лишь около 10-15 см при потреблении в полтора киловатта. Такой режим непрерывной работы сильно разогревает как транзисторы, так и первичную со вторичной обмотки: первоначальный вариант первички и вторички быстро нагревался чуть ли не до сотни градусов и выше, угрожая расплавить каркас; пришлось отказаться от компактности в пользу надёжности и стабильности.

Поделиться