Начало программы для stm32. Начало работы с STM32 в Keil MDK-ARM

Опубліковано 10.08.2016

Для того, чтобы разрабатывать свои программы нам понадобится среда разработки, желательно с дебаггером, и компилятор C.

Я остановился на CooCox CoIDE и GCC . Во-первых этот софт не стоит денег, во-вторых – с ним не возникло никаких вопросов. Установил и начал работать. Правда, CooCox сделан только под Windows. Это не совсем хорошо. И хотя на Ubuntu CooCox работает под wine и даже компиляция проходит успешно, с дебаггером проблема. И работа через wine – это не true way.

Установим IDE CooCox CoIDE на Windows

  • Качаем и устанавливаем программу CooCox (CoIDE-1.7.8.exe)
    На момент написания статьи была доступна версия 2.0 Бета. Но бета-версиям я стараюсь не пользоваться, поэтому в примерах будет фигурировать версия 1.7.8.
  • Качаем и устанавливаем GCC (gcc-arm-none-eabi-5_3-2016q1-20160330-win32.exe)

Первая программа

Запускаем CooCox .

Выполняем пункт меню Project -> New

Указываем имя проекта:

Выбираем Чип:


В репозитории выбираем какие именно модули мы будем использовать:


Открываем main.c і набираем следующий код программы:

#include "stm32f10x.h" #include "stm32f10x_gpio.h" #include "stm32f10x_rcc.h" int main(void) { int i; /* Initialize Leds mounted on STM32 board */ GPIO_InitTypeDef GPIO_InitStructure; /* Initialize LED which connected to PC13, Enable the Clock*/ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE); /* Configure the GPIO_LED pin */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOC, &GPIO_InitStructure); while (1) { /* Toggle LED which connected to PC13*/ GPIOC->ODR ^= GPIO_Pin_13; /* delay */ for(i=0;i

Компилируем (Project->Build )

При первой компиляции IDE может запросить указать местонахождение компилятора.

Надо корректно указать место, куда был установлен GCC .

После удачной компиляции заливаем программу в микроконтроллер. Эта программа будет мигать светодиодом на плате. Как залить программу в микроконтроллер мы рассматривали в .

Если Вы будете заливать прошивку через UART с помощью UART-USB переходника, файл для заливки найдете в директории:
C:\CooCox\CoIDE\workspace\Example_GPIO\Example_GPIO\Debug\bin\Example_GPIO.bin

Если у Вас есть установленный ST-Link программатор, программу в микроконтроллер можно залить прямо с IDE (Flash -> Program Download ).

Если при этом возникла ошибка “Error: Flash driver function execute error ” Рекомендуется:

  1. Запустить STM32 ST-LINK Utility и выполнить Frimware update .
  2. Скопировать файл STLinkUSBDriver.dll из папки
    C:\Program Files\STMicroelectronics\STM32 ST-LINK Utility\ST-LINK Utility
    в папку
    C:\CooCox\CoIDE\bin
    после чего перезапустить CooCox IDE

Некоторые настройки IDE и параметры компилятора

Repository

Выполняем пункт меню View -> Repository

Здесь мы выбираем библиотеки, которые необходимы для нашего проекта. При этом IDE копирует в папку stm_lib вашего проекта нужные файлы.

Конфигурация проекта

Закладка Compile

в этой закладке устанавливаются ключи компилятора. Мы сюда еще будем возвращаться, а пока обратим внимание на поле Optimization . Это поле задает параметр оптимизации для компилятора. Об оптимизации будет отдельный разговор, пока Вам нужно усвоить, что оптимизация Optimizate Size (-Os) максимально уменьшает объем скомпилированных программ. Но при этом компилятор может выбросить (оптимизировать) некоторые операции, и программа может работать не так, как Вам бы хотелось. Поэтому, на первых этапах, я не рекомендую использовать этот метод оптимизации. Установите Optimizate (-O1) .

Закладка Link

В этой закладке пока нас интересует только поле Library и Linked Libraries . Если Вы будете использовать стандартные библиотеки С, например библиотеку математических функций math Вам нужно будет выбрать “Use base C Library “. Если этого не сделать, то компилятор выдаст ошибку.

Закладка Output

Здесь указываются куда складывать скомпилированные файлы и в каких форматах.

Закладка User

Пока в ней мы ничего делать не будем.

Закладка Debugger

В этой закладке устанавливаются параметры дебаггера. Поскольку мы будем использовать ST-Link , здесь ничего менять не придется.

Закладка Download

Здесь устанавливаются параметры загрузки программы в микроконтроллер. Здесь нам тоже ничего менять не надо.

Дебаггер

Конечно, можно просто заливать программу в микроконтроллер и смотреть как она работает. Но иногда, возникают проблемы, и этого не достаточно. Хотелось бы разобраться как работает написаная программа. CooCox CoIDE имеет встроенный дебаггер, что очень полезно на этапе изучения микроконтроллера. Также дебаггер поможет найти ошибки в сложных проектах. CooCox CoIDE уже настроена на работу с ST-Link и никаких дополнительных настроек делать не нужно. Достаточно запустить дебаггер Меню (Debug -> Debug). При этом программатор должен быть подключен к компьютеру, а микроконтроллер к программатору. При запуске дебаггера выполняется компиляция проекта, заливка программы в микроконтроллер и ее пошаговое выполнение.

У Вас есть следующие кнопки для управления дебаггером.

Поэкспериментируйте с ними, чтобы понять как они работают.

В закладке Variables можете наблюдать за значением переменных.

Также можно подвести курсор к переменной и наблюдать в всплывающей подсказке ее значение

Если установить Breackpoint (меню Debug -> Todggle Breackpoint ) на нужные строки в коде, во время выполнения программы дебаггер будет останавливаться на установленных Breackpoint-ах.


Теперь, после первого знакомства с IDE, можно перейти непосредственно к изучению микроконтроллера STM32F103 и написания своих программ.

Одна из причин популярности микроконтроллеров STM32 производства STMicroelectronics – разнообразие инструментов разработки и отладки. Это касается как аппаратных, так и программных средств. Существует возможность создания и отладки резидентного ПО для STM32 без материальных затрат с помощью набора бесплатных программ . В статье дан обзор наиболее значимых бесплатных программных инструментов разработки: ST MCU Finder, STM32CubeMX, SW4STM32, STM32 Studio .

Компания STMicroelectronics (ST) является крупнейшим производителем микроконтроллеров в мире, при этом большая часть приходится на семейства STM32. При разработке новых линеек контроллеров STMicroelectronics преследует несколько стратегических целей:

  • повышение производительности;
  • повышение уровня интеграции: рост объема памяти, расширение перечня периферии;
  • снижение потребления;
  • снижение стоимости.

Для любого инженера очевидно, что эти цели очень часто оказываются взаимоисключающими. По этой причине STMicroelectronics выпускает семейства и линейки микроконтроллеров с акцентом на то или иное из приведенных выше свойств. В настоящее время номенклатура включает десять семейств, каждое из которых имеет свои достоинства и занимает определенную нишу на рынке (рисунок 1).

Дадим краткую характеристику семействам микроконтроллеров STM32 от ST.

Малопотребляющие микроконтроллеры семейств STM32L. Данная группа объединяет семейства, ориентированные, в первую очередь, на достижение минимального уровня потребления. Для этого используются различные методы: динамическое управление напряжением питания, гибкая система тактирования, специализированная периферия (LP-Timer, LP-UART), развитая система режимов пониженного потребления и так далее.

Базовые семейства STM32F0, STM32F1, STM32F3. Данная группа включает семейства со сбалансированными характеристиками и компромиссным значением производительности/потребления/цены.

В свою очередь отдельные пакеты STMCube включают:

  • аппаратно независимые библиотеки HAL для работы с аппаратными средствами микроконтроллеров;
  • библиотеки промежуточного уровня. Например, в состав самого развитого пакета ПО STM32CubeF7 входят следующие библиотеки и стеки: CMSIS-RTOS на базе FreeRTOS, стек TCP/IP на базе LwIP, файловая система FAT на базе FatFs с поддержкой NAND Flash, StemWin – графический стек на базе SEGGER emWin, полный стек USB (Host и Device). Для ряда семейств доступна библиотека Touch Library для сенсорных приложений;
  • примеры и шаблоны проектов для различных сред и отладочных наборов (Discovery, Nucleo, Evaluation Boards).

Чтобы понять, как происходит взаимодействие между составляющими программной платформы STM32Cube, следует обратиться к примеру, представленному на рисунке 9. В этом примере пользователь конфигурирует микроконтроллер с помощью STM32CubeMX. После окончания визуальной настройки (выводов, тактирования и прочего) STM32CubeMX генерирует С-код, для этого используются библиотеки из программного пакета STM32CubeF4. В результате пользователь получает завершенный С-проект, сформированный для конкретной интегрированной среды разработки: IAR™ EWARM, Keil™MDK-ARM, Atollic® TrueSTUDIO и AC6 System Workbench (SW4STM32). В этот проект уже включены все необходимые библиотеки и файлы.

Программа STM32CubeMX значительно упрощает работу программистов, однако ее возможности не безграничны. Прежде чем двигаться дальше, стоит отметить существующие ограничения :

  • генерируемый С-код охватывает только настройку блоков и периферии микроконтроллера. Это значит, что алгоритмическую часть программы автоматически сгенерировать нельзя, ее нужно будет дописать вручную;
  • STM32CubeMX поможет создать только стартовую конфигурацию. Иногда в процессе работы пользователю требуется изменить частоту работы периферийного блока или изменить конфигурацию вывода. Все это придется прописывать самостоятельно;
  • для генерации кода используются стандартные, разработанные ST, библиотеки нижнего уровня (HAL и LL) и промежуточного уровня, например, StemWin или STM32_USB_Device_Library;
  • в процессе генерации С-файл выстраивается таким образом, что для пользователя выделяются специальные секции, в которые он может помещать свой код. Если пользовательский код окажется вне этих рамок – он будет затерт при следующих генерациях;
  • существуют и другие ограничения для отдельных блоков, для более подробного ознакомления с которыми следует обратиться к руководству по STM32CubeMX.

Теперь, когда состав, принцип действия и ограничения STM32CubeMX описаны, можно привести пример работы с данной программой, создать «скелет» простейшего проекта и продемонстрировать работу отдельных утилит.

Создание простейшей программы с помощью STM32CubeMX

Рассмотрим подробнее создание скелета проекта в среде STM32CubeMX . Для начала требуется скачать саму среду STM32CubeMX. Это можно сделать абсолютно бесплатно с сайта ST. После установки на диске пользователя будут размещены как сам STM32CubeMX, так и папки с библиотеками STM32Cube.

Процесс создания скелета проекта выполняется по шагам.

Шаг первый. Скачивание актуальных версий библиотек с помощью специальной утилиты. Для этого вначале нужно настроить параметры сети (Help → Updater Settings) и далее запустить автоматическое обновление (Help → Check for Updates). Если ПК не подключен к сети – обновлять библиотеки придется вручную.

Шаг второй. После запуска STM32CubeMX на стартовом экране или в меню “File” необходимо создать новый проект, нажав “New Project”. Далее STM32CubeMX предложит выбрать целевую платформу: контроллер с заданными параметрами или отладочную плату. На рисунке 10 в качестве примера демонстрируется, как встроенный поиск подобрал список контроллеров по параметрам: семейство STM32F4, корпус TQFP100, объем Flash не менее 592 кбайт, ОЗУ более 214 кбайт.

Шаг третий. На третьем этапе разработчику предстоит определить назначение выводов с помощью Pin Wizard (рисунок 11). Данная утилита помогает создавать требуемую конфигурацию и проверять ее на ошибки. Стоит отметить и удобную систему подсветки, например, системные выводы закрашиваются бледно-желтым цветом.

Шаг четвертый. Настройка системы тактирования производится с помощью вкладки Clock Configuration (утилита Clock Wizard). При этом пользователь работает с визуализированным деревом тактирования (рисунок 12). С помощью Clock Wizard удается за нескольких щелчков мыши выбрать источник системного тактового сигнала, значения определителей и умножителей, а также источники тактирования периферийных блоков. При написании кода вручную для этого потребовалось бы приложить много усилий.

Шаг пятый. Создание С-кода начинается с выбора целевой интегрированной среды в настройках проекта (Project → Settings). В настоящий момент к услугам пользователя предлагаются: IAR™ EWARM, Keil™MDK-ARM, Atollic® TrueSTUDIO и AC6 System Workbench (SW4STM32) (рисунок 13). Далее на вкладке Code Generator следует определиться с составом копируемых в директорию проекта библиотек, настройками обработки пользовательского кода при регенерации (например, сохранять или удалять), настройками использования HAL (рисунок 13).

Для более детальной настройки генератора следует перейти на вкладку Advanced Settings (рисунок 14). Главной особенностью С-генератора в STM32CubeMX является возможность использования как HAL-, так и LL-драйверов. На этом моменте следует остановиться подробнее.

HAL – набор абстрактных драйверов, обеспечивающих максимальную кроссплатформенность среди контроллеров STM32. При этом некоторые драйверы являются абсолютно универсальными (подходят ко всем контроллерам STM32), а часть применима только к отдельным линейкам с соответствующими периферийными блоками (например, блоками шифрования). Главными достоинствами HAL являются :

  • максимальная кроссплатформенность;
  • функциональная ориентированность. Эти драйверы ориентированы не на работу с отдельными блоками контроллера, а на выполнение конкретных задач. Это дает возможность работать не с регистрами, а с осмысленными функциями;
  • не требуется глубокого знания архитектуры микроконтроллера.

Вместе с тем, у HAL есть и недостатки: значительный объем кода, недостаточная оптимизация выполнения задач, сравнительно малое быстродействие. Если эти недостатки являются критичными, то следует использовать LL-драйверы.

Low Layer APIs (LL) – аппаратно зависимые драйверы, позволяющие напрямую работать с периферией контроллера, в том числе – использовать inline-функции и выполнять атомарный доступ к регистрам . Такой подход не требует значительных затрат памяти, функции получаются максимально короткими и эффективными по скорости. Очевидными недостатками LL-драйверов являются снижение совместимости кода при переходе от одного контроллера к другому и необходимость глубокого знания особенностей архитектуры контроллера.

В рамках одно и того же проекта на STM32CubeMX можно одновременно использовать как HAL так и LL, но для разных периферийных блоков. Например, на рисунке 15 показаны настройки С-генератора, при которых для UART/TIM/RTC используются LL-драйверы, а для остальных блоков – HAL.

Шаг шестой. После настройки проекта следует выполнить генерацию кода, зайдя в меню Project → Generate Code. В результате этого в указанной директории проекта будет сгенерирован скелет проекта для заданной среды разработки.

Иногда возникает необходимость миграции проекта с одной платформы на другую. С помощью STM32CubeMX это можно сделать с минимальными затратами времени.

Миграция проектов с помощью STM32CubeMX

Для миграции проекта с одной платформы на другую используется дополнительная утилита File → Import Project (рисунок 15). В ней требуется указать тип нового микроконтроллера и режим миграции. После этого программа автоматически генерирует новый код либо, при наличии неполной совместимости ядер, указывает на возникшие сложности, предлагая пользователю их устранить.

Несовместимость, обнаруживаемая при миграции, может быть устранимой и неустранимой. Неустранимый случай возникает, когда состав периферии контроллеров значительно отличается. Например, ранее использовался модуль Ethernet, который отсутствует на новом МК (рисунок 15). Очевидно, что в таком случае миграция невозможна.

Но зачастую несовместимость имеет локальный характер, когда, например, необходимо всего лишь перенастроить параметры дерева тактирования, чтобы согласовать рабочие частоты, либо изменить номер канала АЦП или DMA и так далее (рисунок 16). В таких случаях STM32CubeMX предложит выполнить миграцию в ручном режиме с устранением появившихся сложностей с помощью редактирования проекта в рассмотренных выше утилитах. При этом STM32CubeMX будет сигнализировать пользователю о наличии проблем до их устранения.

После получения итогового скелета проекта останется добавить пользовательскую алгоритмическую часть кода, провести компиляцию и выполнить отладку. Для этого используются специализированные среды. Среда SW4STM32 для STM32 производства компании AC6 позволяет делать это абсолютно бесплатно.

AC6 System Workbench – бесплатная IDE для STM32

Для редактирования, компиляции и отладки программ предназначены специальные интегрированные среды IDE. Большая часть из них является коммерческими продуктами (IAR™ EWARM, Keil™MDK-ARM, Atollic® TrueSTUDIO и другие), но есть и бесплатные инструменты, например, System Workbench производства компании AC6. В рамках системы названий STMicroelectronics данная IDE носит название SW4STM32 .

Интегрированная среда SW4STM32 предназначена для работы с микроконтроллерами STM32. Она основана на базе платформы Eclipse и является бесплатной и кроссплатформенной. Основными ее достоинствами являются :

  • поддержка работы с микроконтроллерами STM32, аппаратными отладочными наборами (STM32 Nucleo, Discovery и Evaluation boards), с программными библиотеками (Standard Peripheral library и STM32Cube HAL);
  • отсутствие ограничений на объем программного кода;
  • бесплатный компилятор GCC C/C++;
  • свободный отладчик GDB (проект GNU);
  • открытая платформа Eclipse IDE с поддержкой групповой разработки встраиваемого ПО с системой контроля версий SVN/GIT;
  • совместимость с плагинами Eclipse;
  • поддержка ST-LINK;
  • мультиплатформенность и совместимость с Windows®, Linux и OS X®.

С помощью SW4STM32 можно редактировать, компилировать и отлаживать программы для STM32. Для этого удобно использовать скелеты программ, создаваемые в STM32CubeMX. Для их импорта следует выполнить простейшие операции: выбрать меню File -> Import, назначить тип импорта «Existing Projects into Workspace», указать директорию проекта, выбрать сам проект и нажать Finish.

При работе с проектами, созданными в STM32CubeMX, следует размещать пользовательский код в специальных секциях:

/*USER CODE BEGIN…*/

/*USER CODE END…*/

Это необходимо делать, чтобы при повторной генерации кода в STM32CubeMX не произошло затирание рукописной части программы. Повторная генерация необходима в двух случаях:

  • при перенастройке используемого МК;
  • при миграции с одного МК на другой.

Таким образом, при работе в связке STM32CubeMX + SW4STM32 пользователь может в любой момент перенастроить контроллер и произвести миграцию с сохранением пользовательского кода при минимальных затратах времени.

При отладке программ в SW4STM32 доступна возможность широкого мониторинга состояния памяти, регистров, переменных. Также среда имеет поддержку точек останова (рисунок 17). Для запуска процесса отладки требуется нажать значок “Debug” (в виде жука), выбрать тип проекта “Ac6 STM32 C/C++ Application”, определить тип отладчика и интерфейс, нажать кнопку “OK”.

SW4STM32 имеет поддержку систем контроля версий SVN/GIT. Это важно для больших проектов, над которыми работает несколько разработчиков. Система контроля версий позволяет: регистрировать все изменения, производимые в проекте; сравнивать версии проектов; восстанавливать предыдущие версии; разрешать конфликты при работе нескольких программистов над одним файлом; вести параллельно несколько версий и так далее.

В рамках данной статьи не имеет смысла углубляться в разбор тонкостей и различий между SVN и GIT. Скажем лишь, что GIT, являясь распределенной системой, позволяет программистам работать локально, имея на рабочей машине полный репозиторий проекта. При этом GIT сохраняет метаданные изменений, что упрощает слияние версий и переключение между версиями. SVN требует наличия сетевого соединения между разработчиками и сохраняет файлы целиком. SW4STM32 обеспечивает поддержку как SVN, так и GIT.

Рассмотрим последовательность действий при подключении проекта к SVN (рисунок 18).

  • в открытом проекте щелкнуть по его названию на панели директорий правой кнопкой мыши и пройти Team → Share Project(s) (рисунок 18а);
  • выбрать тип системы SVN/GIT и нажать “Next” (рисунок 18б);
  • выбрать директорию для SVN и нажать “Next” (рисунок 18в);
  • выбрать директорию хранения проекта в SVN нажать “Finish” (рисунок 18г);
  • на вкладке “General” (рисунок 18д) выбрать URL-адрес SVN, метку для репозитория, имя пользователя, пароль, нажать “Next”;
  • ввести комментарий для проекта, выбрать файл, помещаемый под контроль SVN, нажать “OK” (рисунок 18е).

В дальнейшем для синхронизации файла или всего проекта необходимо щелкнуть по его названию на панели директорий правой кнопкой мыши и выбрать Team → Commit. В открывшемся окне следует написать пояснение к изменениям и нажать “OK”.

Для отключения SVN следует использовать команду Team → Disconnect.

Для импорта проекта из SVN применяется команда меню Import → SVN → Project from SVN. Далее требуется выполнить ряд настроек по импорту во всплывающих диалоговых окнах.

SW4STM32 имеет очень широкие возможности, но у среды есть и недостатки, достаточно характерные для бесплатных сред:

  • отсутствие встроенного симулятора;
  • компилятор GCC проигрывает своим коммерческим собратьям по объему кода и быстродействию;
  • поддержка SW4STM32 со стороны разработчиков не будет столь оперативной, как в случае с платными средами.

Впрочем, стоит отметить, что данные недостатки могут оказаться не такими критичными, особенно для простых проектов.

Отладка кода может производиться не только в SW4STM32, но с помощью дополнительных средств. Рассмотрим некоторые из них.

STMStudio – простой способ отладки приложений на STM32

STM Studio – фирменная утилита производства компании STMicroelectronics, которая помогает проводить отладку программы и позволяет отслеживать значения пользовательских переменных при выполнении кода в реальном времени. Данная программа запускается под ОС Windows и использует отладчик ST-LINK для связи с микроконтроллером.

STM Studio имеет следующие возможности :

  • чтение переменных из ОЗУ «на лету», без влияния на работу пользовательской программы;
  • использование исполнительных файлов.elf, .out, .axf для импорта переменных;
  • вывод значений переменных в табличной и графической форме;
  • графический вывод в виде графиков или диаграмм;
  • возможность вывода зависимостей переменных, когда одна из переменных откладывается по оси Х, а вторая – по оси Y;
  • логирование данных в файл для последующего просмотра.

Окно STM Studio состоит из нескольких панелей (рисунок 19).

Работа с STM Studio начинается с импорта переменных. Для этого в программу необходимо загрузить тот же исполнительный файл, что находится в самом микроконтроллере. Для этого подойдут следующие форматы, которые генерируются при компиляции: .elf, .out, .axf. Далее необходимо выполнить команду File → Import variables. В диалоговом окне при выборе пункта “Expand table elements” пользователь сможет вручную выбрать из предлагаемой таблицы любые глобальные переменные. Для запуска отладки необходимо выполнить команду “Run”.

Как говорилось выше, STM Studio позволяет отображать переменные в трех формах: в виде текста, диаграммы и графика (рисунок 20). Настройка типа отображения может быть изменена в любое время. Кроме того, все данные дополнительно записываются в лог-файл для дальнейшего анализа. Интересной особенностью STM Studio является возможность отображения зависимостей одних переменных от других, а также построения выражений из переменных.

Популярным средством передачи отладочной информации является использование консоли и функции вывода printf().

Реализация терминального вывода printf() через USART

Использование стандартной функции printf() – один из наиболее популярных методов вывода отладочной информации. С помощью данной функции вывода пользователь может передавать любые данные на консоль среды разработки или терминал. Большинство интегрированных сред поддерживает эту возможность. При использовании STM32 есть два способа реализации этого метода: традиционный, с помощью UART, и дополнительный, через SWO-интерфейс с помощью отладчика ST-LINK. Реализация каждого из них максимально упрощается при использовании STM32CubeMX и SW4STM32.

Рассмотрим вначале первый вариант реализации – через UART. Для этого придется выполнить следующую последовательность действий:

  • обеспечить аппаратное подключение к ПК;
  • выполнить настройку UART в среде STM32CubeMX;
  • реализовать саму функцию printf() в среде SW4STM32.

Подключение к ПК можно выполнить тремя путями: через COM-порт и микросхему приемопередатчика RS-232; через USB-порт и микросхему конвертера UART-USB (например, FT232); с помощью USB-интерфейса отладчика ST-LINK. Вне зависимости от того, какой способ выбран, далее необходимо сконфигурировать аппаратный UART.

C помощью STM32CubeMX настройка UART выполняется в несколько кликов (рисунок 21). Сначала на вкладке Pin Wizard соответствующие выводы контроллера переводятся в режим работы UART. Далее во вкладке “Configuration” настраиваются параметры UART: тип обмена, скорость, наличие стоп-битов и так далее. После этого генерируется С-код.

В среде SW4STM32 необходимо подключить стандартную библиотеку и определить функции _io_putchar() и _write(), например, так:

/*USER CODE BEGIN Includes*/

#include

/*USER CODE END Includes*/

/*USER CODE BEGIN 1*/

int __io_putchar(int ch)

c = ch & 0x00FF;

HAL_UART_Transmit(&huart2,&*c,1,10);

int _write(int file, char *ptr, int len)

for (DataIdx = 0; DataIdx < len; DataIdx++)

Достоинствами такого подхода к передаче отладочной информации можно считать:

  • использование интерфейса UART, который присутствует во всех микроконтроллерах STM32 без исключения;
  • простоту настройки и привычность для программистов. Можно использовать старые наработки из проектов с другими контроллерами;
  • отсутствие сложного аппаратного обеспечения (за исключением моста UART-USB или приемопередатчика RS-232);
  • отсутствие сложного ПО. Работа производится со всеми IDE или терминальными программами.

Однако есть у этого метода и недостатки. Во-первых, придется пожертвовать каналом UART для отладки. А во-вторых, такая реализация влияет на работу контроллера, так как занимает ядро для обработки кода функции printf(). В случае с STM32 есть более специализированный, а главное – простой способ, который не занимает ресурсы микроконтроллера – использование связки SWO и ST-LINK.

Реализация терминального вывода printf() через SWO

При использовании связки SWO и ST-LINK создание терминального ввода/вывода оказывается еще проще, чем в рассмотренном выше методе с аппаратным UART. В этом случае связь с ПК осуществляется через интерфейс SWO и USB-интерфейс, используемый в ST-LINK. Последовательность действий остается примерно той же, что и в предыдущем случае.

Сначала с помощью STM32CubeMX происходит настройка выводов SWO-интерфейса во вкладках “Pin Wizard” и “Configuration” (рисунок 22). После этого происходит перегенерация кода для среды разработки.

Следующий шаг заключается в написании кода обработчика __io_putchar(int ch), например, так:

/*USER CODE BEGIN 1*/

int __io_putchar(int ch)

ITM_SendChar(ch);

/*USER CODE END 1*/

Для отладки удобно использовать утилиту STLink Utility (рисунок 23).

Достоинства метода:

  • не требует дополнительных ресурсов и не занимает коммуникационные интерфейсы;
  • работает параллельно с основной программой и не влияет на скорость ее выполнения, так как не использует ядро для вычислений;
  • идеальный выбор для отладочных наборов с ST-LINK на борту, так как представляет готовое решение.

Из недостатков этого метода реализации можно отметить аппаратную зависимость, так как требуется наличие ST-LINK.

Заключение

Компания STMicroelectronics выпускает более семисот моделей микроконтроллеров STM32, которые отличаются по производительности/потреблению/цене/уровню интеграции. Каждый пользователь сможет подобрать себе оптимальную модель с учетом требований конкретного приложения.

Важным преимуществом STM32 является наличие развитой системы средств отладки. К услугам разработчиков предлагается более ста отладочных плат (Nucleo, Discovery, Evaluation Boards). Еще большим подспорьем для программистов станет наличие полного набора бесплатного прикладного ПО для создания, компиляции и отладки программного кода:

ST MCU Finder – приложение для смартфонов, помогающее выбрать наиболее оптимальный МК для конкретного приложения;

STM32CubeMX – кроссплатформенный графический редактор для конфигурирования микроконтроллеров STM32 и автоматической генерации кода. STM32CubeMX также способен оказать помощь при выборе оптимального микроконтроллера, оценить потребляемую мощность и упростить миграцию проекта между различными МК.

SW4STM32 – кросплатформенная интегрированная среда разработки встраиваемого ПО для микроконтроллеров STM32.

STM32 Studio – утилита для отслеживания и графической визуализации значений переменных при выполнении кода в реальном времени.

ST-LINK Utility позволяет совместно с программатором ST-Link выполнять ввод и вывод отладочной информации через SWO-интерфейс.

Данный набор ПО позволяет выполнить полный цикл разработки резидентного ПО, не потратив ни единого рубля.

Литература

  1. Data brief. NUCLEO-XXXXKX. STM32 Nucleo-32 board. Rev 3. ST Microelectronics, 2016.
  2. Data brief. NUCLEO-XXXXRX. STM32 Nucleo-64 board. Rev 8. ST Microelectronics, 2016.
  3. Data brief. NUCLEO-XXXXZX. STM32 Nucleo-144 board. Rev 5. ST Microelectronics, 2017.
  4. UM1718. User manual. STM32CubeMX for STM32 configuration and initialization C code generation. Rev 18. ST Microelectronics, 2017.
  5. UM1884. User manual. Description of STM32L4 HAL and Low-layer drivers. Rev 5. ST Microelectronics, 2016.
  6. UM1025. User manual. Getting started with STM-STUDIO. Rev6. ST Microelectronics, 2013.
  7. UM0892.User manual STM32 ST-LINK utility software description. Rev 22. ST Microelectronics, 2016.

Данная статья является первой в планируемом цикле статей по изучению программирования микроконтроллеров. Изучая различные материалы я отметил, что практически все они начинаются с того, что новичку предлагается скачать (или использовать идущую со средой разработки) библиотеку для работы с периферийными устройствами и использовать ее для написания своей первой программы (обычно мигание светодиодом).

Меня это сильно удивило. Если верить данным статьям, для программирования не обязательно даже читать документацию к программируемому контроллеру. Меня же учили премудростям «железного программирования» совершенно иначе.

В этой статье, путь от фразы «Да, я хочу попробовать!» до радостного подмигивания светодиода, будет значительно длиннее чем у других авторов. Я постараюсь раскрыть аспекты программирования микроконтроллеров, которые прячутся за использованием библиотечных функций и готовых примеров.
Если вы намерены серьезно изучать программирование микроконтроллеров данная статья для вас. Возможно, она может заинтересовать и тех, кто вдоволь наигрался с Arduino и хочет получить в свои руки все аппаратные возможности железа.

Выбор микроконтроллера

Многие могут сказать, что начинать изучение микроконтроллеров лучше с AVR, PIC, 8051 или чего-то еще. Вопрос многогранный и спорный. Я знаю достаточно примеров, когда люди изучив Cortex-M, программировали AVR, ARM7 и т.д. Сам же я начинал с Cortex-M3. Если перед вами стоит определенная задача, в интернете достаточно много информации со сравнением различных типов микроконтроллеров и решаемых с их помощью задач. На хабре этот вопрос тоже поднимался, например .

Будем считать, что с типом микроконтроллера мы разобрались. Но на рынке представлен огромнейший спектр различных модификаций от разных производителей. Они отличаются по множеству параметров - от размера флеш памяти до количества аналоговых входов. Для каждой задачи выбор стоит производить индивидуально. Ни каких общих рекомендаций тут нет и быть не может. Отмечу лишь, что стоит начинать изучение с МК производителей имеющих как можно больший ассортимент. Тогда, при выборе МК для определенной задачи достаточно велик шанс, что из представленного ассортимента вам что-нибудь да подойдет.

Я остановил свой выбор на STM32 (хотя и считаю, что лучше начинать изучение с МК от TexasInstruments - очень грамотно составлена документация), потому что они широко распространены среди российских разработчиков электроники. При возникновении проблем и вопросов вы сможете без труда найти решения на форумах. Еще одним плюсом является богатый выбор демонстрационных плат как от производителя, так и от сторонних организаций.

Что необходимо для изучения?

К сожалению, для начала программирования МК не достаточно одного лишь ПК. Придется где-то раздобыть демонстрационную плату и программатор. Хотя это и уменьшает конкуренцию на рынке труда.

Сам я использую демонстрационную плату STM3220G-EVAL и программатор J-Link PRO . Но для начала, будет вполне достаточно STM32F4DISCOVERY , которую можно купить без особых проблем за небольшую сумму.

Все примеры будут именно для отладочной платы STM32F4DISCOVERY . На данном этапе нам будет совершенно не важно, что этой плате стоит МК на базе ядра Cortex-M4. В ближайшее время мы не будем использовать его особенности и преимущества над Cortex-M3. А как там будет дальше - посмотрим.

Если у вас есть в наличии любая другая плата на базе STM32F2xx/STM32F4xx, вы сможете работать с ней. В изложении материала я постараюсь максимально подробно описывать почему мы делаем именно так, а не иначе. Надеюсь ни у кого не возникнет проблем с переносом примеров на другое железо.

Среда разработки

Как уже неоднократно упоминалось, для ARM микроконтроллеров существует достаточное количество сред разработки, как платных так и не очень. И снова хочется опустить полемику по этому поводу. Я использую IAR Embedded Workbench for ARM 6.60 . Все примеры будут именно в этой среде. Если вам по душе (или в вашей организации используется) что-то другое (Keil, Eclipse, CCS, CooCoc и т.д.) то это вам тоже не очень помешает. На особенности, связанные именно со средой разработки, я буду обращать отдельное внимание.

Почему платная среда разработки?

Возможно, кто-то будет не совсем доволен тем, что я предлагаю использовать платную среду разработки, но в IAR есть возможность получить временную лицензию без ограничения функционала, либо безлимитную лицензию с ограничением по размеру кода (32КБ для МК это очень много).
Помимо этого, сразу замечу, что для некоторых МК не существует бесплатных сред разработки. И к сожалению эти МК в некоторых областях незаменимы.


Процесс установки я описывать не буду.

С чего начать?

Создание проекта
Для начала создадим пустой проект. IAR позволяет создать проекты на ASM, C и C++. Мы будем использовать C.

Перед нами появится пустой проект с main файлом.

Теперь необходимо настроить проект для начала работы с «нашим» МК и отладчиком. На плате STM32F4DISCOVERY установлен MK STM32F407VG . Его необходимо выбрать в свойствах проекта (General Options->Target->Device):

При выборе целевого программируемого процессора происходит загрузка его описания, что дает широкие возможности для отладки (об этом будет идти речь ниже). Кроме того, автоматически присоединяется конфигурационный файл с описанием доступного адресного пространства для линкера. Если будет необходимо, мы затронем тему конфигурационного файла линкера в следующих статьях.

После этого необходимо настроить отладчик. Отладка программы происходит непосредственно «в железе». Производится это с помощью JTAG отладчика. Более подробнее ознакомиться с тем, как это происходит можно на Википедии . На плату STM32F4DISCOVERY интегрирован отладчик ST-LINK/V2. Для работы с отладчиком необходимо выбрать его драйвер в меню Debugger->Setup->Driver . Так же необходимо указать, что отладка должна производиться непосредственно в железе. Для этого необходимо поставить флаг Debugger->Download->Use flash loader(s)


Для тех, кто увидел слово Simulator

Теоретически, IAR позволяет отлаживать программы с использованием симулятора. Но я ни разу на практике не встречал его использования.

Теперь проект готов для работы (программирования, заливки и отладки).

«ТЗ» для первого проекта
Подведем промежуточный итог: МК и отладочная плата выбраны, проект подготовлен. Пора определиться с задачей.

Не будем отходить от классики. Первым проектом будет мигающий светодиод. Благо на плате их предостаточно.Что же это означает с точки зрения программирования? Первым делом необходимо изучить принципиальную схему демонстрационной платы и понять как «заводится» светодиод.
доступен на сайте производителя. В данном описании даже есть отдельный раздел про светодиоды на плате -4.4 LEDs . Для примера, будем использовать User LD3 . Найдем его на схеме:

Простейший анализ схемы говорит о том, что для того, что бы «зажечь» светодиод необходимо на пин МК подать «1» (которая для данного МК соответствует 3.3В). Выключение производится подачей на этот пин «0». На схеме этот пин обозначается PD13 (это, наверное, самая важная информация из этого документа).

В итоге, мы можем написать «ТЗ» для нашей первой программы:
Программа для МК должна переводить состояние пина МК PD13 из состояния «0» в состояние «1» и обратно с некоторой периодичностью, различимой для человеческого глаза (важное замечание, если моргать светодиодом слишком часто глаз может этого не различить).

Прежде чем приступать к программированию, или немного теории
Прежде чем приступить к реализации нашего ТЗ, необходимо понять как производится управление МК.

Начнем с того, что любой МК включает ядро, память и периферийные блоки. Думаю, что с памятью пока все понятно. Упомяну лишь, в STM32 есть флеш память в которой хранится программа МК (в общем случае это не верное утверждение, программа может храниться во внешней энергонезависимой памяти, но пока это опустим) и другие данные, в том числе и пользовательские. Так же есть SRAM - оперативная память.

Ядро - часть микроконтроллера, осуществляющая выполнение одного потока команд. В нашем МК тип ядра - Cortex-M4. Ядро МК можно сравнить с процессором в ПК. Оно умеет только выполнять команды и передавать данные другим блокам (в этом сравнении не учитываются процессоры с интегрированными графическими ускорителями).
При этом производитель МК не разрабатывает ядро. Ядро покупается у компании ARM Limited . Главное отличие между различными МК - в периферии.

Периферийные блоки - блоки осуществляющие взаимодействие с «внешним миром» или выполняющие специфические функции, недоступные ядру МК. Современные МК (в том числе и STM32) содержат огромный спектр периферийных блоков. Периферийные блоки предназначены для решения различных задач, от считывания значения напряжения с аналогового входа МК до передачи данных внешним устройствам по шине SPI.
В отличии от ядра МК периферийные блоки не выполняют инструкции. Они лишь выполняют команды ядра. При этом участие ядра при выполнении команды не требуется.

Пример

В качестве примера можно привести блок UART, который предназначен для приема и передачи данных от МК внешним устройствам. От ядра необходимо лишь сконфигурировать блок и отдать ему данные для передачи. После этого ядро может дальше выполнять инструкции. На плечи же периферийного блока ложится управление соответствующим выводом МК для передачи данных в соответствии с протоколом. Периферийный блок сам переводит выход МК в необходимое состояние «0» или «1» в нужный момент времени, осуществляя передачу.

Взаимодействие ядра с периферийным блоком
Взаимодействие ядра МК с периферийным блоком осуществляется с помощью спецрегистров (есть еще взаимодействие через механизм прерываний и DMA, но об этом в следующих постах). С точки зрения ядра это просто участок памяти с определенным адресом, вот только на самом деле это не так . Запись данных в спецрегистр эквивалентна передаче команды или данных периферийному блоку. Считывание - получение данных от блока или считывание его состояния. Описание периферийных блоков и их спецрегистров занимает львиную долю описания МК.

ВАЖНО: После записи данных в спецрегистр и последующем чтении вы можете получить совершенно иные данные. Например, передача данных блоку UART для отправки, и считывание данных, полученных блоком от внешнего устройства, осуществляется с помощью одного и того же регистра.

Спецрегистры обычно разделены на битовые поля. Один (или несколько) бит управляют определенным параметром периферийного блока, обычно независимо. Например, разные биты одного регистра управляют состоянием разных выходов МК.

Вспоминаем С
Если вы гуру в языке C, то можете смело пропускать данный раздел. Он предназначен в первую очередь для тех, кого учили (или ктоучился сам) программировать для ПК. Опыт показывает, что люди часто не помнят важных команд. Здесь я вкратце напомню про побитовые операции и работу напрямую с памятью по ее адресу.

Запись данных по адресу в памяти

Предположим, что читая описание периферийного блока, мы поняли, что для его корректной работы необходимо записать в него число 0x3B. Адрес спецрегистра 0x60004012. Регистр 32-битный.
Если вы сразу не знаете как это сделать, попробую описать цепочку рассуждений для получения правильной команды.

Значение 0x60004012 есть не что иное, как значение указателя на ячейку памяти. Нужно именно это и указать в нашей программе, тоесть сделать преобразование типов согласно синтаксису языка C:

(unsigned long*)(0x60004012)

Таким образом, у нас есть указатель на элемент. Теперь нужно в этот элемент записать необходимое значение. Делается это разыменовыванием указателя. Таким образом получаем правильную команду:

*(unsigned long*)(0x60004012) = 0x3B;

Установка произвольных бит в 1

Предположим, что необходимо установить «1» в 7 и 1 биты по адресу 0x60004012, при этом не изменив значение всех остальных бит в регистре. Для этого необходимо использовать бинарную операцию |. Сразу приведу правильный ответ:

*(unsigned long*)(0x60004012) |= 0x82;

Обратите внимание на 2 факта. Биты считаются с нулевого, а не с первого. Данная операция на самом деле занимает неменее 3 тактов - считывание значения, модификация, запись. Иногда это не допустимо, поскольку между считыванием и записью значение одного из бит, которые нам запрещено изменять, могло быть изменено периферийным блоком. Незабывайте про эту особенность, иначе могут полезть баги, которые крайне сложно отловить.

Установка произвольных бит в 0

Предположим, что необходимо установить «0» в 7 и 1 биты по адресу 0x60004012, при этом не изменив значение всех остальных бит в регистре. Для этого необходимо использовать бинарную операцию &. Сразу приведу правильный ответ:

*(unsigned long*)(0x60004012) &= 0xFFFFFF7D;

Или его более простою запись (не переживайте за лишнюю операцию, компилятор все заранее посчитает даже при минимальной оптимизации):

*(unsigned long*)(0x60004012) &= (~0x82);

Некоторые особенности программ для МК
Здесь я постараюсь описать некоторые особенности программ для МК, которые важно помнить. Вещи достаточно очевидные, но все же.
У программы нет конца
В отличии от большинства программ для ПК, программа для МК не должна заканчиваться, НИКОГДА! А что собственно должен будет делать МК после завершения вашей программы? Вопрос, практически, риторический. Поэтому не забываем убедиться в том, что вы не забыли вечный цикл. При желании, можно перевести МК в режим сна.
Пользуйтесь целочисленными переменными
Не смотря на то, что мы используем МК с ядром Cortex-M4, который аппаратно выполняет операции над числами с плавающей точкой, советую вам отказаться от их использования. В МК без поддержки таких операций время вычислений будет просто огромным.
Откажитесь от динамического выделения памяти
Это только совет. Причина проста - памяти мало. Я не раз встречался с библиотеками, в которых были «медленные утечки» памяти. Было очень неприятно, когда после нескольких недель стабильной работы МК зависал с ошибкой. Лучше заранее продумать архитектуру своей программы так, чтобы не пришлось использовать динамическое выделение памяти.
Если же все-таки хочется использовать - внимательно изучите работу менеджера памяти или пишите свой.

Приступаем к работе!

Работа над программой для МК всегда начинается с чтения документации. Для нашего МК доступен на сайте производителя. Страниц много, но все читать пока не нужно. Как уже было сказано, большую часть документации составляет описание периферийных блоков и их регистров. Так же хочу обратить внимание на то, что этот Reference Manual написан не для одного МК, а для нескольких линеек. Это говорит о том, что код будет переносим при переходе на другие МК в этих линейках (если конечно не пытаться использовать периферийные блоки которых нет в используемом МК).

В первую очередь необходимо определиться с какими блоками предстоит работать. Для это достаточно изучит разделы Introduction и Main features .

Непосредственное управление состоянием пинов МК осуществляется с помощью блока GPIO. Как указано в документации в МК STM32 может быть до 11 независимых блоков GPIO. Различные периферийные блоки GPIO принято называть портами. Порты обозначаются буквам от A до K. Каждый порт может содержать до 16 пинов. Как мы отметили ранее, светодиод подключается к пину PD13. Это означает, что управление этим пином осуществляется периферийным блоком GPIO порт D. Номер пина 13.

Ни каких других периферийных блоков на это раз нам не понадобится.

Управление тактированием периферийных блоков
Для снижения электропотребления МК практически все периферийные блоки после включения МК отключены. Включение/выключение блока производится подачей/прекращением подачи тактового сигнала на его вход. Для корректной работы, необходимо сконфигурировать контроллер тактового сигнала МК, чтобы необходимому периферийному блоку поступал тактовый сигнал.
Важно: Периферийный блок не может начать работу сразу после включения тактового сигнала. Необходимо подождать несколько тактов пока он «запустится». Люди, использующие библиотеки для периферийных устройств, зачастую даже не знают об этой особенности.

За включение тактирования периферийных блоков отвечают регистры RCC XXX peripheral clock enable register .На месте XXX могут стоять шины AHB1, AHB2, AHB3, APB1 и APB2. После внимательного изучения описания соответствующих регистров, можно сделать вывод о том, тактирование периферийного блока GPIOD включается установкой «1» в третий бит регистра RCC AHB1 peripheral clock enable register (RCC_AHB1ENR) :

Теперь необходимо разобраться с тем, как узнать адрес самого регистра RCC_AHB1ENR .

Замечание: Описание системы тактирования МК STM32 достойно отдельной статьи. Если у читателей возникнет желание, я подробнее освещу этот раздел в одной из следующих статей.

Определение адресов спецрегистров
Определение адресов спецрегистров необходимо начинать с чтения раздела Memory map в Reference manual. Можно заметить, что каждому блоку выделен свой участок адресного пространства. Например, для блока RCC это участок 0x4002 3800 - 0x4002 3BFF:

Для получения адреса регистра, необходимо к начальному значению адресного пространства блока RCC прибавить Addr. offset нужного регистра. Addres offset указывается и в описании регистра (см. скриншот выше).

В итоге, мы определили адрес регистра RCC_AHB1ENR - 0x4002 3830.

Блок GPIO
Для общего ознакомления с блоком GPIO я настоятельно рекомендую полностью прочитать соответствующий раздел Reference Manual. Пока можно не особо обращать внимание на Alternate mode . Это оставим на потом.

Сейчас же наша задача научиться управлять состоянием пинов МК. Перейдем сразу к описанию регистров GPIO.

Режим работы
В первую очередь необходимо установить режим работы 13 пина порта D как General purpose output mode , что означает что блок GPIO будет управлять состоянием пина МК. Управление режимом работы пинов МК производитсяс помощью регистра GPIO port mode register (GPIOx_MODER) (x = A..I/J/K) :

Как видно из описания для совершения требуемой нам настройки необходимо записать значение 01b в 26-27 биты регистра GPIOx_MODER . Адрес регистра можно определить тем же методом, что описан выше.

Настройка параметров работы выходных пинов порта GPIO
Блок GPIO позволяет применить дополнительные настройки для выходных пинов порта. Данные настройки производятся в регистрах:
  • GPIO port output type register (GPIOx_OTYPER) - задается тип выхода push-pull или open-drain
  • GPIO port output speed register (GPIOx_OSPEEDR) - задается скорость работы выхода
Мы не будем менять данных параметров, поскольку нас вполне устраивают значения по умолчанию.
Установка значения на пине МК
Наконец-то мы подошли к моменту управления состоянием выхода МК. Для утановки выходного значения на определенном пине МК есть два метода.

Используем регистр GPIO port bit set/reset register (GPIOx_BSRR)

Запись «0» или «1» в биты 0-16 приводят к соответствующему изменению состояния пинов порта. Для того, чтобы установить определенное значение на выходе одного или нескольких пинов МК и не изменить состояния остальных, необходимо будет пользоваться операцией модификации отдельных бит. Такая операция выполняется не менее чем за 3 такта. Если же необходимо в часть битов записать 1, а в другие 0, то понадобится не менее 4 тактов. Данный метод предпочтительнее всего использовать для изменения состояния выхода на противоположное, если его изначальное состояние не известно.

GPIO port bit set/reset register (GPIOx_BSRR)

В отличии от предыдущего метода, запись 0 в любой из битов данного регистра не приведет ни к чему (да и вообще, все биты write-only!). Запись 1 в биты 0-15 приведет к установке «1» на соответствующем выходе МК. Запись 1 в биты 16-31 приведет к установке «0» на соответствующем выходе МК. Этот метод предпочтительнее предыдущего, если необходимо установить определенное значение на пине «МК», а не изменить его.

Зажигаем светодиод!
Найдя адреса всех необходимых регистров, можно написать программу, которая включает светодиод:
void main() { //Enable port D clocking *(unsigned long*)(0x40023830) |= 0x8; //little delay for GPIOD get ready volatile unsigned long i=0; i++; i++; i++; i=0; //Set PD13 as General purpose output *(unsigned long*)(0x40020C00) = (*(unsigned long*)(0x40020C00)& (~0x0C000000)) | (0x04000000); //Turn LED ON! *(unsigned long*)(0x40020C14) |= 0x2000; while(1); }
Можно компилировать (Project->Compile ) и заливать (Project->Download->Download active application ). Или запустить отладку (Project->Dpwnload and Debug ) и начать выполнение (F5).
Светодиод загорелся!
Мигаем светодиодом
Мигание светодиода есть ни что иное, как попеременное включение и выключение с задержкой между этими действиями. Самый простой способ - поместить включение и выключение в вечный цикл, а между ними вставить задержку.
void main() { //Enable port D clocking *(unsigned long*)(0x40023830) |= 0x8; //little delay for GPIOD get ready volatile unsigned long i=0; i++; i++; i++; i=0; //Set PD13 as General purpose output *(unsigned long*)(0x40020C00) = (*(unsigned long*)(0x40020C00)& (~0x0C000000)) | (0x04000000); while(1) { //Turn LED ON *(unsigned long*)(0x40020C14) |= 0x2000; //Delay for(i=0; i<1000000 ;++i); //Turn LED OFF *(unsigned long*)(0x40020C14) &= ~0x2000; //Delay for(i=0; i<1000000 ;++i); } }
Значение 1000000 в задержке подобрано экспериментально так, чтобы период мигания светодиода был различим глазом, но и не был слишком велик.
Оптимизируем алгоритм
Минусом выбранного подхода миганием светодиодом является то, что ядро МК большую часть времени проводит в пустых циклах, хотя мог бы заниматься чем-нибудь полезным (в нашем примере других задач нет, но в будущем они появятся).

Для того, чтобы этого избежать, обычно используется счетчик циклов, а переключение состояние пина МК происходит при прохождении программы определенного числа циклов.
void main() { //Enable port D clocking *(unsigned long*)(0x40023830) |= 0x8; //little delay for GPIOD get ready volatile unsigned long i=0; i++; i++; i++; i=0; //Set PD13 as General purpose output *(unsigned long*)(0x40020C00) = (*(unsigned long*)(0x40020C00)& (~0x0C000000)) | (0x04000000); while(1) { i++; if(!(i%2000000)) { //Turn LED ON *(unsigned long*)(0x40020С14) |= 0x2020; } else if(!(i%1000000)) { //Turn LED OFF *(unsigned long*)(0x40020С14) &= ~0x2000; } } }
Но и тут не обойдется без проблем, с изменением количества команд выполняемых внутри цикла, будет меняться период мигания светодиодом (или период выполнения других команд в цикле). Но на данном этапе мы не можем с этим бороться.

Немного об отладке
IAR позволяет осуществлять отладку приложения непосредственно в железе. Все выглядит практически так же, как и отладка приложения для ПК. Есть режим пошагового выполнения, входа в функцию, просмотр значения переменных (В режиме отладки View->Watch->Watch1/4 ).

Но помимо этого, присутствует возможность просмотра значений регистров ядра, спецрегистров периферийных блоков (View->Register) и т.п.
Я настоятельно рекомендую ознакомиться с возможностями дебаггера во время изучения программирования МК.

Несколько слов в заключение

Возможно, многие скажут, что ручное прописывание адресов в программе это не правильно, поскольку производитель предоставляет файлы с определениями регистров и битовых полей, библиотеки для работы с периферией и другие инструменты, облегчающие жизнь разработчику. Я с этим полностью согласен, но все равно считаю, что первые шаги в программировании МК необходимо делать перекапывая документацию к вручную, самостоятельно определяя необходимые регистры и битовые поля. В дальнейшем этим можно не пользоваться, но уметь нужно обязательно.
Приведу лишь несколько причин для этого утверждения:
  • В библиотеках от производителя иногда встречаются ошибки! Я один раз чуть не сорвал срок проекта из-за этого. Несколько раз перепаивал чип, думая, сто повредил кристалл при пайке (до этого такое случалось). А проблема заключалась в том, что в библиотеке был неверно прописан адрес спецрегистра. Обычно такое случается с МК или линейками МК только вышедшими на рынок.
  • Библиотеки для работы спериферией некоторых производителей не реализуют всех возможностей периферийных блоков. Особенно этим грешилb Luminary Micro , которых в последствии выкупили TI. Приходилось писать инициализацию периферии вручную.
  • Многие привыкают начинать программирование МК с изучения примеров. Я считаю, что сперва необходимо определиться с тем, что позволяет реализовать МК. Это можнопонять только прочитав документацию. Если чего-то нет в примерах, это не значит, что железоэто не поддерживает. Последний пример - аппаратная поддерка PTP STM32. В сети, конечно, можно кое-что найти, но это не входит в стандартный набор от производителя.
  • Драйверы периферийных блоков некоторых производителей настолько не оптимизированы, что на переключение состояния пина средствами библиотеки тратится до 20 тактов. Это непозволительная роскошь для некоторых задач.

Спасибо всем, кто прочитал мой пост, получилось значительно больше чем я ожидал в начале.
Жду ваших комментариев и аргументированной критики. Если у прочитавших возникнет желание - постараюсь продолжить цикл статей. Возможно у кого-то есть идеи по поводу тем, которые стоило бы осветить - я был бы рад их услышать.

Нам понадобятся следующие пакеты, часть из которых уже упоминалась в предыдущем посте:

yaourt -S arm-none-eabi-gcc arm-none-eabi-gdb \
arm-none-eabi-newlib stlink stm32cubemx openocd

Здесь приведены названия пакетов для Arch Linux , но я довольно уверен, что в других дистрибутивах Linux они называются так же, или как-то похоже. Если вам не удастся найти готовый пакет с STM32CubeMX, программу можно скачать отсюда (потребуется регистрация). Для работы приложению требуется виртуальная машина Java . Несмотря на то, что программа имеет расширение.exe, она превосходно запускается в Linux через java -jar file.exe .

Опционально вы также можете загрузить программу STLinkUpgrade, доступную для скачивания (также потребуется регистрация). Эта программа предназначена для обновления прошивки программаторов STLink, что нередко приводит к исправлению багов, ну или как минимум к лучшим сообщениям об ошибках. Как и STM32CubeMX, эта программа написана на Java.

Необходимое железо

Помимо профессионального софта нам также понадобится профессиональное железо. Плата Blue Pill, рассмотренная в прошлом посте, в целом неплоха, но пользоваться ею несколько неудобно. В частности, к ней приходится подсоединять внешний программатор с его лишними проводами. Плюс STM32CubeMX про эту плату ничего не знает, что также вносит свою долю неудобства. Наконец, если у вас этой платы еще нет, вам придется ждать ее доставки с AliExpress.

Компания STMicroelectronics производит собственные отладочные платы серий Discovery и Nucleo. Последние являются более новыми, поэтому сосредоточим свое внимание на них. Платы STM32 Nucleo имеют встроенный отладчик STLink v2.1, что избавляет нас от лишних проводов. Они до определенной степени совместимы с Arduino-шилдами, что может пригодиться. Цены на платы Nucleo в России начинаются от 19$ за плату Nucleo-F030R8 , притом купить ее можно в любом Чип-и-Дипе хоть сегодня.

Лично я взял плату помощнее — Nucleo-F411RE , на вырост, так сказать:

На двух других вкладках с названиями Clock Configuration и Configuration в этот раз нам ничего менять не придется. На вкладке Power Consumtion Calculator можно оценить энергопотребление микроконтроллера и время его работы в зависимости от выбранного аккумулятора и рабочего напряжения. Надо сказать, довольно любопытная и полезная возможность.

На этом с настройкой покончено. Говорим Project → Generate Code. Во вкладке Project вводим имя проекта (Project Name), выбираем родительский каталог для этого проекта (Prоject Location), в выпадающем списке Toolchain / IDE выбираем вариант «Makefile». Во вкладке Code Generator стоит выбрать опцию «Add necessary library files as reference in the toolchain project configuration file». Иначе в ваш проект будут скопированы все библиотечные файлы, а это более 160 Мб. Затем жмем ОК. Проект STM32CubeMX автоматически сохранится в каталоге с исходным кодом (файл с расширением.ioc), поэтому отдельно сохранять его не требуется.

Makefile в получившемся проекте нужно немного подправить. Во-первых, нужно исправить значение переменных BINPATH и PREFIX :

BINPATH =/ usr/ bin
PREFIX =arm-none-eabi-

В противном случае не будут найдены исполняемые файлы компилятора.

Во-вторых, стоит найти переменную OPT и дописать в нее флаг -Wall :

OPT = -Og -Wall

Иначе компилятор не будет ругаться на код, который скорее всего содержит ошибки — например, выражение if (arr[ i] = 1 ) , на месте которого почти наверняка должно быть if (arr[ i] == 1 ) .

В-третьих, если после этого шага сказать make , вы можете получить ошибки вроде следующих:

На момент написания этих строк в STM32CubeMX был баг, заключавшийся в том, что он несколько раз включал одни и те же файлы в список C_SOURCES . Нужно найти этот список в Makefile и убрать из него все повторы.

В-четвертых, Makefile умеет компилировать проект, но не содержит таргетов для прошивания платы, ее очистки, а также подключения по UART. Стоит дописать:

# проверьте, что для отступа используется табуляция, а не пробелы!
flash: all
st-flash --reset write build/ $(TARGET) .bin 0x8000000
erase:
st-flash --reset erase
uart:
screen / dev/ ttyACM0

Наконец, из соображений скорее перфекционизма, чем острой надобности, я бы заменил все абсолютные пути на относительные, введя переменную вроде:

FIRMWARE = $(HOME) / STM32Cube/ Repository/ STM32Cube_FW_F4_V1.18.0

… а также прогнал бы Makefile через утилиту dos2unix.

На этом подготовку шаблона/каркаса можно считать завершенной! Чтобы не проделывать описанные выше шаги при создании каждого нового проекта, шаблон стоит сохранить где-нибудь в надежном месте. Дабы не приходилось при повторном использовании этого шаблона редактировать имя проекта, стоит также отредактировать значение переменной TARGET на какое-нибудь абстрактное main .

Пишем код!

Если вы откроете файл Src/main.c, то найдете в нем множество отметок вроде:

/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

По задумке, код нужно вписывать между этими комментариями, чтобы при обновлении проекта в STM32CubeMX пользовательский код не был затерт. Лично я добавил вызов процедур init() и loop() в окрестностях основного цикла программы:

/* Infinite loop */
/* USER CODE BEGIN WHILE */
init() ;
while (1 )
{
loop() ;
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */

… а сами процедуры объявил перед процедурой main() :

/* USER CODE BEGIN 0 */

void init(void ) {
/* do nothing, yet */
}

void loop(void ) {
/*
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_SET);
HAL_Delay(500);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, GPIO_PIN_RESET);
HAL_Delay(500);
*/

if (HAL_GPIO_ReadPin(GPIOC, GPIO_PIN_13) == GPIO_PIN_RESET) {
HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5) ;
}

HAL_Delay(100 ) ;
}

/* USER CODE END 0 */

Управление микроконтроллером осуществляется через библиотеку под названием HAL, Hardware Abstraction Layer. Как видите, что касается обычного чтения кнопок и мигания светодиодами, здесь все не намного сложнее, чем в случае с той же Arduino.

Подключаем плату и говорим make flash . Если все было сделано правильно, нажатие синей кнопки на плате будет приводить к переключению зеленого светодиода. Также можно оставить в процедуре loop() только код, который в приведенном выше отрывке я закомментировал, и тогда программа превратиться в обычный Blink.

Важно! Иногда микроконтроллер не запускается с новой прошивкой без нажатия черной кнопки Reset. По идее, обновление прошивки программатора с помощью утилиты STLinkUpgrade и использование утилиты st-flash с флагом --reset , как в нашем Makefile, исправляет эту проблему. Но так как она воспроизводится нерегулярно, полной уверенности нет.

Заключение

Как видите, все не так уж и сложно. Полученных знаний уже вполне достаточно, например, для того, чтобы написать программу, выводящую что-то на ЖК-экранчик или декодирующую сигнал от джойстика Sega . Можно даже пообщаться с какими-то сторонними модулями по SPI или I2C, хотя и не слишком эффективно, если вспомнить о наличии в микроконтроллере аппаратной поддержки этих протоколов. Однако эти темы, ровно как и ШИМ, чтение аналогового сигнала, работа с прерываниями или отладка кода, увы, выходят за рамки этой и без того уже довольно длинной статьи.

Полную версию исходников к этому посту, как обычно, вы найдете на GitHub .

А как вы разрабатываете под STM32?

Дополнение: Если вам понравилась эта заметка, вас могут заинтересовать статьи об обмене данными по UART , SPI , I2C и I2S в контексте микроконтроллеров STM32. Также обратите внимание на посты

Приветствую всех любителей программирования, микроконтроллеров, да и электроники в целом на нашем сайте! В этой статье немного расскажу о том, чем мы будем заниматься тут, а именно об учебном курсе по микроконтроллерам ARM.

Итак, для начала разберемся, что же нужно знать и уметь, чтобы начать изучать ARM’ы. А, в принципе, ничего супер сложного и фееричного 😉 Конечно, на контроллеры ARM люди обычно переходят, уже наигравшись с PIC’ами и AVR’ками, то есть в большинстве своем опытные разработчики. Но я постараюсь максимально подробно и понятно описывать все то, что мы будем разбирать, чтобы те, кто впервые решил попробовать себя в программировании микроконтроллеров, могли легко разобраться в материале. Кстати, если будут возникать какие-нибудь вопросы, или просто что-то будет работать не так, как задумывалось, пишите в комментарии, постараюсь разобраться и помочь.

Теперь перейдем к техническим вопросам) Несколько раз я уже упомянул название «Учебный курс ARM», но, по большому счету, это не совсем верно. Микроконтроллера ARM как такового не существует. Есть контроллер с ядром(!) ARM, а это, согласитесь, все-таки не одно и то же. Так вот, такие девайсы выпускает ряд фирм, среди которых особо выделяются, STMicroelectronics и NXP Semiconductors. Соответственно выпускают они контроллеры STM и LPC. Я остановил свой выбор на STM32, они мне просто больше понравились =) У STM очень подкупает, что разобравшись с любым МК из линейки STM32F10x, не возникнет никаких проблем и с любым другим. Одна линейка – один даташит. Кстати есть огромное количество как дорогих, так и не очень, отладочных плат с контроллерами STM32, что очень радует, хотя первое время будем отлаживать наши программы в симуляторе, чтобы оценить возможности контроллера, прежде чем покупать железо. Вот, на всякий случай, официальный сайт STMicroelectronics – .

Как то плавно выехали на тему компилятора, так что скажу пару слов об этом. Я, недолго думая, выбрал Keil, не в последнюю очередь из-за мощного встроенного симулятора. Можно и на UART там посмотреть, и на любой регистр, и даже логический анализатор имеется в наличии. Словом, у меня Keil оставил в основном только приятные впечатления, хотя есть и минусы, конечно, но не катастрофические. Так что можете смело качать Keil uvision4 с офф. сайта (). Правда есть одно НО – IDE платная, но доступен демо-режим с ограничением кода в 32кБ, которых нам пока с лихвой хватит. Кому этого мало есть огромное количество кряков для Keil’а 😉 Устанавливается все без проблем – пару раз тыкаем далее и все отлично ставится и работает без дополнительных танцев с бубном.

Собственно, вот и все, что я хотел тут рассказать, пора переходить от слов к делу, но это уже в следующей статье. Будем изучать программирование микроконтроллеров STM32 с нуля!

Поделиться